Gated silicene as a tunable source of nearly 100% spin-polarized electrons.

نویسندگان

  • Wei-Feng Tsai
  • Cheng-Yi Huang
  • Tay-Rong Chang
  • Hsin Lin
  • Horng-Tay Jeng
  • A Bansil
چکیده

Silicene is a one-atom-thick two-dimensional crystal of silicon with a hexagonal lattice structure that is related to that of graphene but with atomic bonds that are buckled rather than flat. This buckling confers advantages on silicene over graphene, because it should, in principle, generate both a band gap and polarized spin-states that can be controlled with a perpendicular electric field. Here we use first-principles calculations to show that field-gated silicene possesses two gapped Dirac cones exhibiting nearly 100% spin-polarization, situated at the corners of the Brillouin zone. Using this fact, we propose a design for a silicene-based spin-filter that should enable the spin-polarization of an output current to be switched electrically, without switching external magnetic fields. Our quantum transport calculations indicate that the proposed designs will be highly efficient (nearly 100% spin-polarization) and robust against weak disorder and edge imperfections. We also propose a Y-shaped spin/valley separator that produces spin-polarized current at two output terminals with opposite spins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Valley-polarized metals and quantum anomalous Hall effect in silicene.

Silicene is a monolayer of silicon atoms forming a two-dimensional honeycomb lattice, which shares almost every remarkable property with graphene. The low-energy structure of silicene is described by Dirac electrons with relatively large spin-orbit interactions due to its buckled structure. The key observation is that the band structure is controllable by applying electric field to silicene. We...

متن کامل

Electrically controllable sudden reversals in spin and valley polarization in silicene

We study the spin and valley dependent transport in a silicene superlattice under the influence of a magnetic exchange field, a perpendicular electric field and a voltage potential. It is found that a gate-voltage-controllable fully spin and valley polarized current can be obtained in the proposed device, and the spin and valley polarizations are sensitive oscillatory functions of the voltage p...

متن کامل

Electrically tunable band gap in silicene

We report calculations of the electronic structure of silicene and the stability of its weakly buckled honeycomb lattice in an external electric field oriented perpendicular to the monolayer of Si atoms. The electric field produces a tunable band gap in the Dirac-type electronic spectrum, the gap being suppressed by a factor of about eight by the high polarizability of the system. At low electr...

متن کامل

Graphene nanoring as a tunable source of polarized electrons.

We propose a novel spin filter based on a graphene nanoring fabricated above a ferromagnetic strip. The exchange interaction between the magnetic moments of the ions in the ferromagnet and the electron spin splits the electronic states, and gives rise to spin polarization of the conductance and the total electric current. We demonstrate that both the current and its polarization can be contro...

متن کامل

The Thermodynamic Properties of Polarized Metallic Nanowire in the Presence of Magnetic Field

In this article, the second quantization method has been used to investigate some thermodynamic properties of spin-polarized metallic nanowire in the presence of magnetic field at zero temperature. We have been observed that in different magnetic field, the equilibrium energy of system increases as the density increases. The spin-polarization parameter corresponding to the equilibrium state of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature communications

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013